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1. I n t r o d u c t i o n  a n d  m a i n  resu l t s  

McMullen [25] and Bedford [2] independently studied plane sets constructed as 

follows. Let 1 < m < n be integers. By drawing n - 1 vertical lines and m - 1 

horizontal lines, partition the unit square into n m  congruent rectangles. Let S 

be a subcollection of these rectangles; erase all other rectangles and partition 

the remaining ones into n m  congruent subrectangles, again keeping only those 

which correspond to the pattern S. Repeating this procedure ad infinitum, a 

compact set is obtained. Viewed as subsets of the 2-torus, such sets are invariant 

under the t~ end~176 ( n0 m0)  ' and are the simplest invariant sets: 

using the natural Markov partition obtained by expanding in base n along the 

x-axis and in base m along the y-axis, such a set corresponds to a full-shift on 

IS I symbols. Nevertheless, when n > m the different expansion coefficients in 

the horizontal and vertical directions make the quantitative analysis of these sets 

quite delicate; McMullen and Bedford succeeded in calculating their Hausdorff 

dimension and showing it is usually strictly smaller than the Minkowski (i.e. 

Box) dimension. For instance, the set determined by the pattern in Figure 1 has 

Hausdorff dimension log2(1 + 21~ 2); for a general pattern S, the dimension is 
m - - 1  log,~(~-~i= ~ z(i)log~ m) where z ( i )  is the number of rectangles in row i of S. 

Fig. 1. Typical McMullen's example 

Apart from their intrinsic interest, the motivation for studying these sets is 

twofold: First, their analysis leads to questions concerning the asymptotics of 

matrix products which arise in other contexts, e.g. in Kesten [21]; see section 

3. More importantly, these sets may serve as prototypes for invariant sets under 

nonconformal smooth maps. 

Now we concentrate on subsets of T 2 = ~:2/Z2 which are invariant under the 

endomorphism 

and correspond to shifts of finite type. Denote by 

D = { 0 , . . . , n -  1} x { 0 , 1 , . . . , m -  1} 
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the set of digits. To every sequence {dk}k~=l in D N there corresponds a point  in 

~72 via wha t  m a y  be called "base T representat ion":  

0) 
(1) RT({dk})  = 0 m -k  dk. 

k=l  

Any 0 - 1 ma t r i x  A with  rows and columns indexed by D defines a shift of finite 

type  and we let KT(A)  be its image under  RT, i.e. 

(2) KT(A)  = {RT{dk} I A(dk, dk+l)  = 1 for k > 1}. 

THEOREM 1.1: Given the endomorphism T, the 0 - 1  ma t r i x  A and the compact 

T-invariant set  KT( A ) defined above, construct m matrices Ao, A1, . . . , Am-1 

with rows and columns indexed by D, as follows: Aj(d ,d ' )  = A(d,d')  i f  the 

second coordinate old '  E D is j ,  and Aj(d,  d') = 0 otherwise. Then 

(3) d i m K T ( A )  = lira _1 log m E [[Aik" A~ 1" "Ail [[~ 
k--.or k - " '"  

O~il,...,i~ (_m--1 

where d im denotes Hausdorff dimension and a = log m~ log n _< 1 (the choice of 

norm is clearly immaterial). 

The  theorem is proved in a more  general form (per ta ining to sofic systems)  in 

section 3 where me thods  for calculat ing the limit in (3) are discussed. Explicit  

calculat ions are in section 4. 

Example: Let K be the set de te rmined  by s ta r t ing  with  a square a and i tera t ing 

the subs t i tu t ion  rules in Figure 2. Let  a = l o g 2 / l o g 3 .  Then  the Hausdorff  

d imension of K is log 2 r -~ 0 .883127. . .  where r is the unique posit ive solution of 

the equat ion  
1 2 ~ 3 ~ 

(4) r = - +  + + . . .  
r 

Equivalently,  r is the spect ra l  radius of the infinite ma t r ix  

0 1 2 ~ 3 ~ 4 ~ ... / 
1 0 0 . . .  

0 1 0 . . .  

0 0 1 0 . . .  
�9 �9 , 
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The Minkowski dimension of K is approximately 0.8875138...; observe that  this 

is quite close to the Hausdorff dimension. The details are in Example 4.2. 

a ~-~ a b 

b 

Fig. 2. A sofic invariant set. 

Recall that the Minkowsk i  d i m e n s i o n  (sometimes called box  d imens ion)  

of a totally bounded set K in a metric space is 

dimM(K) = tim log ~(K, e) 
, 1o  - l o g  

when the limit exists, where ~(K, e) is the smallest number of e-balls which 

cover K.  

The Minkowski dimension is usually easier to calculate than the Hausdorff 

dimension. The next proposition is contained in theorem 3 of Deliu et al. [12]. 

PROPOSITION 1.2: Assume the adjacency matrix A is pr imi t ive ,  i.e. some 

power of A has positive entries. Then the set KT(A) considered in the previous 

theorem has Minkowski dimension 

1 
dimM(KT(A)) -- log----~htop(T, KT(A)) 

( 1  lo--~)htop(Y--* my mod 1, ~rv(KT(A))), 
+ log m 

where ~rv is projection to the y-axis and htop(T, K) denotes the topological 

entropy of the map T on the compact set K. 

Remark: The topological entropy htop(T, KT(A)) equals the logarithm of the 

spectral radius of A (Parry [26]). Since the map y --* my mod 1 on zCyKT(A) 

is a finite-to-one factor of a sofic system (cf. Weiss [30] and w its topological 

entropy can also be written as log of the spectral radius of a suitable integer 

matrix. 

When do the Minkowski and Hausdorff dimensions coincide? 

For the sets considered in McMullen [25], this happens only if in the pattern S 

defining the construction, all nonempty rows have the same number of rectangles. 

This is explained and extended in the next theorem. 
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THEOREM 1.3: Assume that the matrix A is primitive. For the set KT(A)  

considered in Theorem 1.1, dim[KT( A )] = dimM [KT( A )] if[ the unique invariant 

measure of maximal entropy on KT(A) projects via Try to the unique measure of 

maximal entropy on ~rv ( KT (A) ). 

Note that the measures of maximal entropy for shifts of finite type (and sofic 

systems) are given by an explicit formula (due to Parry [26]; see Walters [29]) so 

the condition of the theorem can be checked. 

The rest of the paper is organized as follows. In the next section, we survey 

some of the previous work on self-affine sets. In section 3, Theorem 1.1 and 

Proposition 1.2 are proved. 

Section 4 is devoted to examples pertaining to Theorems 1.1, 1.2, and 1.3. 

Considerable simplification in the formula (3) for the dimension of KT(A)  occurs 

if the matrices Aj appearing there share the same Perron eigenvector or if one of 

them has rank 1. The first case includes the self affine graphs studied by Kono 

[22], Bedford [4, 5] and Urbanski [27, 28] (cf. Example 4.1); the construction 

appearing in Figure 2 illustrates the second case (cf. Example 4.2). 

ACKNOWLEDGEMENT: The second author is indebted to J. F. Mela and F. 

Parreau at the Universit6 Paris Nord and J. P. Conze and Y. Guivarc'h at the 

Universit6 de Rennes for their hospitality which made this work possible. 

2. B a c k g r o u n d  

An attractive introduction to Hausdorff dimension is Falconer [14]. In particu- 

lar, following Hutchinson, it is shown there that  for "self-similar" sets, the Haus- 

dorff and Minkowski dimensions coincide. The same coincidence was proved by 

Furstenberg [16] for compact subsets of the circle which are invariant under an 

endomorphism x --~ nx mod 1. Furstenberg's result extends to compact subsets 

of higher dimensional tori which are invariant under c o n f o r m a l  toral endomor- 

phisms; see Dekking [11], Mauldin and Williams [24] for further extensions and 

refinements in the self-similar setting. When the conformality assumption is 

removed, McMullen and Bedford showed that  the Hausdorff dimension of an in- 

variant set may be strictly smaller than the Minkowski dimension. Indeed, this 

is the typical situation for the self-affine carpets 

k=l 0 m -k dk I dk E D 



162 R. KENYON AND Y. PERES Isr. J. Math. 

(where D C {0, 1 , . . . , n -  1} x {0, 1 , . . . , m -  1}) which are invariant under the 

endomorphism 

The set K(T, D) can also be viewed as the attractor for the family of IDI affine 

contractions 

i.e. K(T, D) is the unique compact set which is the union of its images under 

these contractions. This point of view is adopted in Falconer [13, 15] and in 

Gatzouras and Lalley [17]. 

Falconer considers a family of affine maps (L~(x) + k ai}i=l where the L~ are 

linear contractions of R d with IIL~ II < �89 and a i e  R d. He shows that  for Lebesgue 

almost all translations k (a~}~=l the at tractor of this family has equal Hausdorff 

and Minkowski dimensions and gives an asymptotic formula for this dimension. 

The examples considered by McMullen, Bedford, Gatzouras and Lalley as well 

as those in the present paper (cf. Example 4.4) typically fall in the exceptional 

set for Falconer's theorem. It would be nice to have checkable conditions on 

the translations a~ for the validity of his formula. Gatzouras and Lalley extend 

McMullen's theorem to attractors of families of affine contractions which map 

the unit square to rectangles contained in it with height greater than width, such 

that  these rectangles are lined up in rows - -  for any two of them, the projections 

to the y-axis are disjoint or identical. They show that  the at tractor supports 

a "Bernoulli" measure (obtained by assigning suitable probabilities to the affine 

maps) which has full Hausdorff dimension. In Example 4.4, we show this no 

longer holds if the rectangles referred to above are not "lined up". 

The Hausdorff dimension estimates in this paper are based on the following 

basic lemma (cf. Billingsley [7], Young [31], or Falconer [14, Prop. 4.9]). 

BILLINGSLEY'S LEMMA: Let # be a positive finite Borel measure on the r-torus 
T r. Assume K C T r is a Borel set satisfying #(K) > 0 and 

K c { x E T r  ,li~inf l~ } 
log e - "r �9 

Then dim(K) = % 

Here the balls Be(x) may be replaced by cubes, etc. 
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Define the dimension of a measure, dim(p), as the minimal dimension of Borel 

sets of full measure. If a measure # satisfies 

liminf l o g # [ B ~ ( x ) ]  _ "Y for  # - a . e .  x ,  
~lo log r 

then dim(p) = 7 and furthermore any set of dimension < -y has #-measure zero. 

3. D i m e n s i o n s  o f  sofic sets  

Our first aim is to prove a slightly generalized form of Theorem 1.1. Subshifts 

which are factors of shifts of finite type (SFT's) were called sofic s y s t e m s  by 

Weiss [30] (a f a c to r  map is a continuous, shift-commuting map). Boyle, Kitchens 

and Marcus [10] showed that  the factor map can be taken to be "right resolving" 

which yields the following. 

PROPOSITION 3.1: Let G = (V, E) be a finite directed graph in which loops and 

multiple edges are allowed. Suppose the edges of G are colored in ~ colors in a 

right-resolving fashion: no two edges emanating from the same vertex have the 

same color. Then the color sequences which arise from infinite paths in G form 

a sofic system on t symbols. Conversely, any sofic system may be generated in 

this way. 

The right-resolving property of the coloring implies that  every color sequence 

arises from at most IVI paths in G. This is crucial below. The edges in G are 

conveniently represented by the a d j a c e n c y  m a t r i x  A where for any two vertices 

v, w in G, A(v, w) is the number of edges in E from v to w. 

For the rest of this section, let T be the toral endomorphism ( n 0 ~. 
\ 0 m / 

Definition: The image of a sofic system on the nm symbols {0, 1 , . . .  ,n  - 1} • 

{0, 1 , . . . , m -  1} by the representation map RT defined in (1) is called a 

T - inva r i a n t  Sofic set .  

The notion of a sofie set is more flexible than it seems. A sofic set corresponds 

to a sofic system in any Markov partition (cf. Ashley, Kitchens and Stafford [1]). 

Also, for any sofic system with symbols in Z 2, its image under RT is a sofic set; 

this is proved exactly like Theorem 5.5 in Kenyon and Peres [20]. We now state 

the extension of Theorem 1.1. 
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THEOREM 3.2: Let G be a directed graph as in Proposition 3.1 with edges labeled 

by { 0 , . . . , n -  1} x { 0 , . . . , m -  1} = D and adjacency matrix A. Let ~ C O N be 

the resulting sofic system. Then the Hausdorff dimension of RT(~2) is given by 

the right-hand side of(3),  where for 0 < j < m and vertices v, v I in G, Aj(v,  v') 

denotes the number of edges from v to v' in G such that the second coordinate 

of their label is j .  

Remarks: 0. To get a vivid picture of the matrices Aj, see the examples in 

section 4. 
v 'm-1  A" 1. Observe that z_~j=o 3 = A. To obtain Theorem 1.1 from Theorem 3.2, 

simply restrict attention to graphs with vertex set D and no multiple edges, with 

every edge labeled by the vertex it leads to. 

2. If we use a norm satisfying ][BIB2]I _< [[BI[[" [[B2[[ on matrices, then the 

expression log ~-~'~0<jl ..... jr,<m flAil "..." AjN ][~ is subadditive in N so the limit in 

(3) exists. Consequently, it exists for any norm. 

Proof of Theorem 3.2: The upper bound on the dimension of RT(~)  is easier to 

prove. Let N be a large integer and consider the set 12 (N) consisting of sequences 

{w~}~~162 1 such that each block (OJkN+I,WkN.4-2,...,r for k > 0 can be 

extended to an infinite sequence in ~. 

Then RT(~ (g)) is a McMullen carpet with respect to the endomorphism T g. 
N . N - u  The number of rectangles in row ~-~,=l 3~m of the initial pattern defining this 

carpet is bounded above by [lAy, Aj~ . . . . .  AjN_~ AyN II (where we use as norm the 

sum of the absolute values of the elements) since each such rectangle corresponds 

to at least one path of length N in G. By McMullen's theorem 

d imRT(~)  < dimRT(~2(N)) 
1 

< log(mN-------- ~ log ~ IIAjl ...Ar ~ 
0_<jl ..... jN<m 

with 
log(m N) log m 

a -  log(nN) -- logn 

The lower bound for dim[RT(Q)] is trickier. First, for the second inequality 

above, given j l , j 2 , . . . , j N  in { 0 , 1 , . . . , m -  1} the number of blocks 

(Wl,W2,. . . ,wg) which are legal in gt and project to ( j l , . . .  ,JN) in the second 

coordinate is at least ~1 [[AJl"'" Aj~[[ where V is the vertex set of G. Hence 

limN--.r162 dim RT(~ (N)) indeed equals the limit in (3). 
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The remainder of the proof relies on the following general lemma on matrices�9 

LEMMA 3.3: Given m nonnegative matrices Ao, A~ , . . . ,  Am-1 with rows and 

columns indexed by the finite set V and given 0 < a <_ 1, define for v E V 

~N(V) = E [(Aj~. A j 2 . . . . .  AjN)(v,v)] ~ 
O<_jl , . . . , jN < m  

and 

~N = E 
0< j l  ,...jN < m  

where IIBll = E . , ~ v  IB(v,w)l. 

IIAj~ . . . . .  AjN II ~ 

Then there exists a vertex v E V such that . 

= & I / N  limsup[~N(V)] 1/N lim ~ N  
N ~ o o  N---*oo 

Proof'. For any sequence (Vo, Vl, . . . ,VN) of N -~- 1 elements of V, define its 

ske le ton  to be ( 0 ) ,  ( S l ) ,  ( s2 ) , . . . ,  ( se ) w h e r e v s l _ l = v o i s  
YO Vs l  Vs2 Vs e 

the last occurrence of v0 in the sequence, %2-1 the last occurrence of vsl, etc.; 

finally se is the smallest s for which Vs = VN. For instance, if Vo = VN the 

skelet~ is just ( 0 ) " wri te  m~ Be = Aje and 

I IBI"B2" �9  = ~ B I ( V o , v l ) B 2 ( v l , v 2 ) ' . . . ' B N ( V N _ I , V N ) .  
vo ~Vl ~... ~VN 

Next, decompose this sum according to the skeleton of the sequence Vo,. �9 vg.  

Using the inequality (x + y)~ < x ~ + y~ we get 

[ I B I ' B 2 - . . . . B N I I  ~ <_ b ~lyr y ~  ( B l ' B 2 . . . B s l - 1 ) ( v 0 ,  v0) ~ 
s k e l e t o n s  

�9 ( B s ~ + ~ . . . .  B s ~ _ ~ ) ( v s ~ , V s ~ ) ~ . . . .  �9 ( B s ~ + I . . . B N ) ( v s , , v ~ )  ~ 

where b = maxj .... , Aj(v,  v ~) was used to bound the factors from the skeleton 

itself. Recall that  Be = Aj~ and sum the last inequality over all 0 < j l ,  j2 . . . .  , jN 

< m to obtain 

~N <-- b ~lV[ E 

(v~ ..... (v : )  
~ s x - l ( V 0 )  - ~ s ~ - s l - l ( v s l )  . . . . ~ N - s , - l ( V s , ) .  
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Consequently, for t > 0 the power series 

(5)  E ~NtN 
N 

is bounded above by the product 

oo 

(6) l-I [ be  N-l(v) tN] 
vEV N=I 

so the radius of convergence for (5) is at least the minimum over v E V of the 

radii of convergence of the factors in (6). 

Applying the usual Cauchy-Hadamard formula for the radius of convergence 

proves the lemma. II 

Remarks: 1. The lemma above becomes much easier if one assumes that  the 
m--1 

matrix 7~j=o Aj is primitive. 

2. The lemma holds also for a > 1; simply use convexity of t ~ t ~ instead of 

subadditivity. 

Completion of the proof of Theorem 3.2: We use the notation of Lemma 3.3. 

Fix some v E V for which 

n% l/N lim sup ~9 N (V)I/N lim =N 
N---*oo N---*oo 

and consider the collection of sequences gt(N, v) which arise as label sequences 

from infinite paths in the graph G = (V, E) and visit v at all times which are 

multiples of N. Explicitly, given the labeling L: E ~ D, the set ~t(N, v) consists 

of all sequences (L(el), L(e2), L(e3), . . .)  where (el, e2, e3,. . .)  is a path in G and 

the initial vertex of eqN+l is v, for all q _> 1. 

The set RT(~(N, v)) is a McMullen Carpet for T N, contained in RT(~t). The 
N number of generating rectangles of size n -N • m -N in row ~-~=1 ivmN-v is at 

least 
1 

~ A ~ I  �9 Ai2 "..." A~N(v,v) 

and hence by McMullen's formula 

dim[RT(ft)]>dim[RT(~t(N,v))]> 1--~----log [~VI ~N(v)] 
- -  - -  log m N " 
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Taking limsup as N --* oc and using our choice of v yields 

1 
dimRT(ft )  > lim - -  logON. 

N--,~ N log m 

This completes the proof. I 

Theorem 3.2 leads to the question of calculating the limit in (3). One case is 

particularly simple. 

PROPOSITION 3.4: Suppose that the nonnegative square matrices A0,. �9 �9 Am-1 

a11 share the same strictly positive eigenvector u: 

Aju = ~ju. 

Then: 1.L 

lim E IIAj, ...Aj,,II '~ = ~ A~. 
N---*cx~ 0 ~ j l  . . . . .  jN<m j = 0  

Proo~ Immediate, upon observing that the ratio of IIAj~ . . .  Aj~ H and 

lIAr1 . . .  Aj,,ull = ~1 . . .  ~ j ~ .  Ilull 

is bounded. II 

See Example 4.1 for some examples where Proposition 3.4 applies. In other 

cases, we resort to spectral theory to study the limit (3). 

Following Kesten [21], introduce an operator Z: acting on the continuous func- 

tions on the sphere sIVl-l :  

m - - X  [ a jx  ~ 
(7) (s = E IIAjxll'~f " 

j--0 \ II&xll ] 

Iteration of s yields 

(LNI)(x) = I I & l . . & , , x l l " f  { AJl""AjNx ~ 
�9 k IIAjl .mjNxll]" 

0 < j l  , . . . , j N < m  

The usual Gelfand formula implies that  the spectral radius p(s is precisely 

(s) lim [ ~ Ilmjl ...&NIle] 1IN 
N...~o o L 

0<jl,...SN <m 
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It follows from the results of Kesten [21] and the refinements in Lepage [23] that 

in many cases the spectrum of E except for a simple eigenvalue p(t:) is contained 

in a disk of radius p(L) - e about the origin and hence the convergence in (8) is 

exponential. For instance, this holds if the matrices Aj are strictly positive - -  a 

rare occurrence in our application. It would be useful to know the most general 

conditions. 

The approach indicated above simplifies if one of the matrices Ao , . . . ,  Am-l ,  

say Ae, has rank 1. We may then replace the sphere by a countable set of 

directions, the one determined by A~ and its orbit under the semigroup generated 

by {Aj : j ~ g}. The operator l: reduces to an infinite matrix whose spectral 

radius can sometimes be calculated explicitly. This is carried out in detail in 

Example 4.2. The sums appearing in (8) were used by Kesten [21] to study 

random difference equations and by Lepage [23] to obtain large deviation results 

for random matrix products; see Bougerol and Lacroix [8] for information on the 

spectrum of the opera tor / : .  

We now present the simple proof of a formula for Minkowski dimension which 

extends Proposition 1.2. Calculations of this type may be found in Deliu et al. 

[12]. 

PROPOSITION 3.5: Let G be a graph as in Proposition 3.1 with edges labeled by 

D = {0 , . . . ,  n - 1} • {0 , . . . ,  m - 1} and adjacency matrix A. Let ~ C O N be 

the resulting sotic system, and let RT be the representation map defined in (1). 

Then (1 1) log o(A) + htop(y --~ my mod 1, ~y (RT(a))) 
dimM (RT(Ft)) -- log n log m log n 

where p(A) is the spectra/radius of A, provided the matr ix A is primitive. 

Proo~ Recall that ~ is obtained from the directed graph G = IV, E) and the 

right-resolving labelling L: E ~ {0, 1 . . . .  ,n  - 1} • {0 , . . .  ,m  - 1}. 

Write L = (L~,Ly) withL~: E ~ ( 0 , 1 , . . . , n - I }  and Ly: E ~ ( 0 , . . . , m - I } .  

To every path el, e2 , . . . ,  ek in G attach the sequence L ( e l ) , . . . ,  L(ek) and let 

N(k) denote the number of sequences so obtained. 

Similarly, let Ny (k) denote the number of distinct sequences of the form 

Ly(el), Ly(e2), . . . , Ly(ek) 

and M(k) denote the number of distinct sequences of the form 

L(el), L(e2) , . . . ,  L(ei~kj ), n~(e[~kj+l ) , . . . ,  Lu(ek) 



Vol. 94, 1996 SOFIC AFFINE-INVARIANT SETS 169 

respectively, obtained as (el, e2 , . . . ,  ek) ranges over all paths of length k in G 

(here a = logm/logn).  We then have 

htop(T, RT(~)) = lim 1 logN(k)  = logp(A) 
k--*oo 

(9) 

and 

(10) 

Also 

htop(y --* my mod 1, ~ry(RT(~)) = lim 1 k--.oo -k logNy(k).  

1 
(11) dimM(RT(~)) = lim - -  log M(k), 

k- .~ k logm 

provided the last limit exists. 

The formulas (9) and (10) follow from Bowen's definition of topological entropy 

(cf. Bowen [9]) and the inequality ]~lllAkll <_ N(k) <_ IIAIIk; (11) is obtained from 

counting "approximate squares" of size n-[akj  • m-k  which intersect RT(~), as 

explained in McMullen [25]. 

Clearly, 

M(k) < i ( t a  kJ)Ny(k - Ca kJ). 

On the other hand, A r is a positive integer matrix for some r > 1 which implies 

that 

Y ( [ a  kJ - r)Ny(k - [a kJ) _< M(k). 

Combining the last two formulae gives 

log N([akJ  - r )+  1 logNy(k  - [akJ) < ~ log M(k)  

1 1 
<_ -~ log g([akJ)  + -~ log Ny(k  - [akJ). 

Finally, passing to the limits as k -* oc here and using (9)-(11) completes the 

proof. II 

Remark: The assumption that A is primitive in Propositions 1.2 and 3.5 cannot 

be dropped. 

( 5  0 ) a n d  consider the McMullen Carpets K(T,  D1) and Let T = 0 4 

K(T, D2) obtained from 
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It is easy to write the union K(T, D1) U K(T, D2) as KT(A) for an appropriate 

0 - 1 matrix A. Clearly, hton(T, KT(A)) = log3 and 

1 
htop(y ~ 4y, ~y(KT(A)) = -~. 

Since 

dimM(KT(A)) -- log 3 
log 5'  

the formula in Proposition 1.2 does not hold. An example constructed in 

discussions with Shahar Mozes shows the formula need not hold for a T-invariant 

compact set which is not sofic, even if T is topologically transitive on it. 

4. Examples 

Example 4.1: Shared Perron eigenvectors. The situation described in Proposi- 

tion 3.4 occurs in the self-affine graphs studied by Bedford, Kono and Urbanski. 

In fact consider any substitution rule on 2 symbols which yields the graph of a 

continuous function, as in Figure 3. 

This figure represents the labeled graph of Figure 4. 

I I I I l l lu 
r~- - I I I I I  ul 

Ioldlol~lull 
r~ 

Iolotdlllll 
"111 dodll 

I I I I I l l~ l  

Fig. 3. A continuous, 5elf-at~Jne function. 
(0,2) 

~11) ) ( D (,o) (3,0) ~ ~(~:~?) 
(6,0) (6,2) 

Fig. 4. Sofic system associated with Fig. 3. 
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Observe that any right resolving labelling as in Proposition 3.1 can be depicted 

in this manner. 

The matrices A0, A1,. �9 Am-1 constructed in Theorem 1.1 for these examples 
( 1 )  ( 3  2 )  

all have 1 as a left eigenvector (e.g. in the example above Ao = 0 1 ' 

( 1  0 ) a n d A 2 _ _  ( 1  0 )  
A I =  1 2 1 2 )" 

Thus Proposition 3.4 yields the dimension of these graphs; McMullen's formula 

applies verbatim. This was already computed in some special symmetric cases 

by Bedford [4, 5] and Urbanski [27]; Bedford's method extends to these more 

general cases and, further, to sofic sets where there exists an invariant measure 

of maximal dimension which makes the digits independent. 

Example 4.2: This example appeared in Figure 2. We read off from there that 

A0 = (00 01) andA1 = ( 11 0)1 " L e t a = l ~  SinceA1A~ 0 ) 1  = 

( 1 )  T h e O r e m l ' l i m p l i e s t h a t l  ' 

N _ ~ N  l~ E ( 1 , 1 ) A j l . . . . A j N  0 
0_<j~ ..... jN <m 1 

To analyze this limit, partition the summands by direction. More precisely, 

observe that for any N-tuple (Jl . . . .  ,iN) the vector (1, 1)Aj~ . . . . .  AjN is an 
integer multiple of (q, 1) for some nonnegative integer q (we then say that the 
N-tuple "belongs to q"). Denote by kON(q) the sum 

E [ ( I ' I )A j~ ' ' " 'AJN  ( 0 1 ) ]  ~ 
O<_jl ..... J N < m 

extended over all N-tuples which belong to q. By convention, ~0(0) = 1 and 

k~0(q) = 0 for q > 0. Noting that (q, 1)A0 = (0, q) and (q, 1)A1 = (q + 1,1) we 
get for each N _> 0: 

q2N+l(q') = q2N(q'-- l) 

~I/N+ 1 (0) ----- ~ kON(q)q~" 
q--0 

In vector notation, 

k~N+ 1 = M ~  N 

if q' ~ 0, 
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where M is the infinite matrix, depicted in the introduction, which has ones on 

the subdiagonal, (0, 1, 2 ~, 3 ~ . . . .  ) as the first row and zeros elsewhere. 

Define r > 1 by the relation 

r =  A.., rk" 
k=l  

It is immediate that the vector u = (1, ~, ~ . . . .  ) satisfies M u  = ru. This implies 

that 

(13) II~NI[ = I lM~0[I  < []Mnull = rnllull 

(where as usual we use the /Lnorm) .  

Conversely, apply the Perron-Frobenius theorem to the upper left g x g 

submatrix Me of M to get 

(14) liminf II~NI[ 1IN > liminf IIMN~oI[ 1/N = re 

where re, the spectral radius of Me, satisfies 
t-1 ka 

r g m E - - .  
k=0 rk  

Since clearly lime-_.o~ re = r, combining (13) and (14) we obtain 

lim IIkONH 1/N = r. 

Recalling the definition of ~N, (12) yields dim[KT(A)]  = log2(r ) as asserted in 

the introduction. 

To obtain the Minkowski dimension we must find the topological entropy of the 

projection 7ry (KT(A) ) .  This corresponds to a sofic system given by the labelled 

graph of Figure 5. 

0 

1 

Fig. 5. 

This labelling is not right-resolving; however, the same subshift arises if we 

erase the loop attached to the vertex b (see Boyle, Kitchens and Marcus [10] 

for a general procedure). This yields the golden shift (no two consecutive zeros) 

which has entropy log 12- ~ .  Therefore by Proposition 1.2: 

diMm(KT(A)) log2 ( 1 1 ) 1+v / -5_0 .8875138  
- log----3 + log 2 log 3 log ~ . . .  
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Example 4.3: A similar example is given by the substitution in Figure 6. 

a b b Ilv r,v 
, , i b  b b 

a b 

Fig. 6. 

One of the matrices is again singular, leading to a calculation like the previous 

example. The dimension is log 2 r = 1.77624..., where r is the unique positive 

solution to 

5~ 14~ ~ 2 J 
r _ - 2 ~ + - - +  + . . . + - - + . . .  

r - - ~ -  r k - 1  " 

The Minkowski dimension is 1 + log2(3 2 - ~ )  = 1.7839... 

Example 4.4: Consider the a t t ractor  K for the 3 contractions depicted in 

Figure 7. 

Fig. 7. 

To compute d im(K) ,  observe that  2K mod 1 is a sofic set determined by the 

substitution in Figure 8 and clearly dim(2K) = d im(K) .  One computes the two 

matrices to be: 

(101) (110) 
Ao = 1 1 0 , A1 = 0 0 0 �9 

0 0 0 1 0 1 

The Hausdorff dimension is dim[K] = 1.36629695... ; the Minkowski dimension 
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is 2 -  log3(2 ) = 1.3690702... 

-1 . . . ~  a b [ - ~  = . . . .  

c a  a b 

' ~  �9 c ' a  

Fig. 8. 

What distinguishes this example from those studied in McMullen [25] and 

Gatzouras and Lalley [17] is the fact that all "Bernoulli" measures on K (obtained 

by assigning probabilities to the rectangles in the initial pattern) appear to have 

strictly smaller Hausdorff dimension than K: to compute the Bernoulli measure 

of maximal dimension, assign probabilities Pl,P2,p3 to the three rectangles at 

positions (0, 1), (1, 1/2), and (2, 0). By symmetry we can assume Pl = P3, so 

that p = (pl, 1 - 2p1,pl). Figure 9 shows two plots of the dimension of/_tp as a 

function of Pl. In the first, the range of Pl is from 0 to 0.5, and the dimension 

of #p varies from 0 to its maximum value 1.364987 .... In the second plot, Pl is 

in the range [.3, .35] and the vertical range is [1.358, 1.3663]. The top edge of the 

box is the value of the Hausdorff dimension of the set in question, strictly larger 

than largest Bernoulli measure dimension. 

12649 

/ 
O. i 

o. p.t o.5 

1.3663 

m..p / Z 

1.358 'r 
.3 p_i .35 

Fig. 9. 

Example 4.5: This is a self-affine graph in the sense of Kamae [18] obtained 

from the following substitution (Figure 10). 

Because there is no common eigenvector, the formula in Bedford [4, 5] does not 

apply. Using Theorem 1.1 the Hausdorff dimension is 1.35912 .... The Minkowski 

dimension is again 2 - log 3 2. 

Example 4.6: A surprising case of coincidence of Hausdorff and Minkowski 

dimensions is in Figure 11. 

The dimension is 1 + log 3 2, the same as the dimension of the product of the 
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ternary  Cantor  set with an interval; this is easily seen since the above set is just  

2K  mod  1 where K is the a t t rac tor  in Figure 12. 

D---- o su ~ _ _ _ ~  

$ 

u id 

/ ~, ; V 
'V Vl tu 

/ V 

~V 

Fig. 10. 

[ ~  ~ a b c 

8 a :btc 

~ D tl 

b c 

[] 

Fig. 11. 

,,' R [I 
Fig. 12. 

Example 4.7: A one-parameter family of self-atOne sets. Consider the following 

one-parameter  family of sets. 

1 and let Ku be the a t t rac tor  for the three affine maps  L e t 0 < u <  

Y 

( ) (x+i) 
L2 x = 3 

y ~2-Fu ' 

x x+____~2 

tha t  is, K~ is the unique compact  set in the plane such tha t  K~ 
1 It  is easy to see tha t  for all 0 _< u _< ~, 

-- U3=, Li(Ku). 

dimM(Ku)  = 2 - log3(2 ) -- 1 .36907. . .  
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(this is included in more general results of Deliu et al. [12] and Falconer [15]). 

a 

u{ a 

Fig. 13. A one-parameter family of self-affine attractors. 

By McMullen [25], 

dim(K0) = dim(K1/2) = log2(1 4- 2 l~ 2) = 1.34968... 

In Example 4.3 we showed that  

dim(K1/a) = 1.366297... 

The same method (but involving more work) may be applied to calculate dim(K~) 

for any rational value of u. 

We claim that  for almost every u E [0, 1/2], 

dim(K~) = dimM(K~). 

Proo~ Observe that,  after removing a countable subset of K~, K~ is the graph of 

a function. Lifting Lebesgue measure from the x-axis to this graph and projecting 

to the y-axis yields the distribution of the random variable W = ~--:~n~=l Wn2 -~ 

where Wn are i.i.d, random variables taking the values {0, 1, u} with equal prob- 

ability. Consider the random variable 

Z = ~ Zn2 -n 
n = l  

Iol Iol Illwi   where the Zn are i.i.d, and take the values 0 ' 1 ' 0 

Z to the line connecting the origin to ( 1 equal probability. Projecting yields 
k u / 

x/T + u2W. The distribution of Z is easily seen to have dimension log 3/ log 2 > 1 

(it is essentially Hausdorff measure on the Sierpinski gasket). Thus by Kaufman 

[19], in almost all directions Z projects to an absolutely continuous random 

variable, i.e. for a.e. u the set K~ carries a probability measure whose projection 

to the y-axis (which is the distibution of W) is absolutely continuous. By Bedford 

and Vrbanski [6], theorem 13, it follows that  dimM(K~) = dim(K~) for such u, 

proving our claim. | 
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QUESTION: IS it true that dimM(K~) = dim(K~) for all irrational u E [0, 1/2]? 
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